Colorectal Cancer Diagnostic Techniques Using Colorectal Mucus Credit: Korea Institute of Materials Science (KIMS)
Previous Next
Newswise — A research team led by Dr. Ho Sang Jung of the Advanced Bio and Healthcare Materials Research Division at the Korea Institute of Materials Science has developed an innovative sensor material that amplifies the optical signals of cancer metabolites in body fluids (saliva, mucus, urine, etc.) and analyzes them using artificial intelligence to diagnose cancer.
This technology quickly and sensitively detects metabolites and changes in cancer patients’ body fluids, providing a non-invasive way to diagnose cancer instead of traditional blood draws or biopsies. In collaboration with Professor Soo Woong Yoo of Chonnam National University Hospital, the team was able to diagnose colorectal cancer by inserting a plasmonic needle that amplifies the Raman signals of molecules into a 1-millimeter hole that can be inserted with a colonoscopy camera, and swabbing the surface of the tumor without causing bleeding in order to analyze its composition.
The team also developed a technology that collects saliva from lung cancer patients and categorizes the cancer’s stage, in collaboration with Professor Byung-Ho Chung at Samsung Medical Center. The breath of lung cancer patients contains volatile organic compounds (VOCs) that are different from those of healthy individuals. These compounds dissolve in saliva and are present as lung cancer metabolites. The team has perfected a technology that uses paper-based sensors to distinguish between normal individuals and lung cancer patients, as well as to stage lung cancer using artificial intelligence.
There are many stories of dogs that barked at their owners so much that the owners thought something was wrong. As a result, they went to the doctor and discovered cancer. This is because dogs have a sensitive sense of smell that allows them to smell the metabolites, including VOCs, that exist in human body fluids. The team sought to implement these principles into a cancer diagnostic sensor. The technology detected signals from metabolites in body fluids with high sensitivity using plasmonic materials that amplify Raman signals by more than 100 million times without utilizing conventional, complex and expensive equipment. Artificial intelligence analysis […]
Light-AI technology opens the door to early cancer diagnosis